
With Static Site Generation and Composable Architecture
Unlocking Sustainability at Scale

7 March 2024

Mikkel Keller
Chief Technology Officer
Novicell UK

Seasoned software architect with a computer
science background and deep roots in the
Internet.

25 years of experience in the industry.

Comprehensive knowledge of Internet technologies,
software principles, patterns and enterprise
architecture.

A special love for all things digital

$WHOAMI

4

A practical deep dive into the technical intricacies of unlocking sustainability at scale for a
global website with thousands of composed pages.

Topic of the day

5

A real life-sized project – not a toy story

About AlixPartners

AlixPartners is a global consultancy firm headquartered
in New York, working at the leading edge of corporate
strategic thinking.

The high-level brief

The aim is to develop a sustainable, modern, elegant and
seamlessly integrated brand experience that articulates
and demonstrates our proposition to clients.

Our website needs to showcase our firm, our work, our
people, and the opportunities we have for talent.

Introducing the case

6

High-level translation of the brief

A global consultancy

• Globally available, performant and
secure corporate website.

• Multi-lingual with regional subsites.

• Distributed editorial team.

Showcase our firm, our work, our
people, and the opportunities we have
for talent

• Content and data from various
systems and integrations.

• Corporate content (250+ pages)

• News and events (1400+ pages)

• Biographies (1000+ pages)

• Insights and articles (1400+ pages)

• Vacancies (100+ pages at any time)

A sustainable, modern, elegant, and
seamlessly integrated brand

• Integrated on-site experience.

• Findability and relevance.

• Sustainable platform.

Let’s break that down

And how this maps to website platform architecture

Sustainability by design

9

What can we learn?

Circular economy:

The impacts the product will
have across its full life cycle.

Provisions should be made to
ensure options for maximising
the product's value across its
full life cycle and keeping
materiality in a value flow.

Sustainable (product) design strategies

Patterns:

• Dematerialisation.

• Recyclability.

• Repairability.

• Reusability.

• Disassembly.

• Longevity.

• Efficiency.

• Modularity.

Anti-patterns:

• Design for obsolescence.

• Design for disposability.

• Dark Patterning:
Psychological nudging,
urgency, doom scrolling, etc.

10

How does this map to software design?

Dematerialisation

• Less content, fewer pages, fewer words, fewer digital assets, fewer
and darker colours.

• Content and brand strategy.

Recyclability

• Software itself is not typically recyclable but can promote recyclability
by using open-source code and reusable components.

Repairability

• Designing software with a modular architecture promotes easier
“repair” of issues, upgrades and maintenance.

• Postponing a rebuild.

Reusability

• Emphasising the creation of modular, reusable components that can
be leveraged across different applications

Disassembly.

• A well-targeted and well-scoped microservices can be reused in
future projects.

• Moving from monolithic to microservice architecture

Longevity

• Backward compatibility, version support, and long-term maintenance.

• Composable architecture embraces change and thereby postpones
the end of life.

Efficiency

• Optimising resource usage and performance to minimise
environmental impact.

• Code optimisation, algorithmic efficiency, energy consumption, and
resource utilisation.

Modularity

• Modular design supports sustainability by enabling software systems
to adapt to changing requirements, technology trends, and
environmental constraints over time.

11

• Hosting and storage = infrastructure.

• Processing and compute = Infrastructure + software architecture and system design.

• Transfer and size = software architecture and system design.

Disclaimer:

• Today will be a practical guide to sustainable software design rooted in a real-life
example.

• Mostly about system and data architecture.

• Less about hosting and storage.

• Less about frontend frameworks.

The 3 classic sustainable software areas

12

Sustainable pre-requisites and tactics

02 – Expose content01 – Compose content
• True headless and federated

content layer.

• Aggregate and cross-pollinate
content and data from multiple
systems.

• Dedicated microservices for
ingestion of content and data.

• Publish-time pre-processing over
request-time processing and
caching.

• Multiple source APIs reduced to
a single content delivery API.

• Preparing a page for static site
generation requires ALL content
and global elements, contrary to
a single-page application where
content can be reused.

• Efficient delivery of page data in
a single request.

• Efficient delivery of all routes.

• Efficient bulk API for delivering
content for routes in a single API
request.

03 – Generate static site
• Effective frontend build and

static site generation process.

• Ability to generate a full and
partial static site and know
when to apply which.

• Strategies to reduce the number
of static site generation
requests.

• Composable automation vs
manual trigger by editors.

• Editor friendly.

Sustainable data pre-processing

1. Content composition

How to achieve the composition of platforms and services to
enable a seamless and fully integrated user experience

Enabler
True ‘headless’

15

CMS and website are together as one – together, they will live, and they will die.

Nowhere near headless

Website & CMS

Database

16

The CMS and website are two different systems.

Headless

REST API
WebsiteCMS

17

Separation of the website and the CMS with indirection.

True headless

Pre-prepared
content

Database
Intermediate

Storage

WebsiteCMS

REST API

API

The site is fully functional even when
the CMS is down for maintenance.

How to achieve the composition of platforms and services to
enable a seamless and fully integrated user experience

Enabler
Content federation layer

19

Content federation as a service

Content federation

• A headless, tech-
agnostic infrastructure.

• Centrepiece in composable
architecture.

• Blazingly fast.

• Sustainable.

• If microservices are Lego,
Enterspeed is the building
system.

Enterspeed provides software as a service tool for
implementing headless at scale with any system, any
source, anywhere.

20

Composable architecture

Composable architecture with static site

B
ackend For Frontend A

P
I

Publishing layer True headless layer Presentation layer

Static
Website

Static site
generation

Publish triggers
content ingestion

Search indexing
API

Search

Publish static pages

Content

Passle (insights)

Umbraco (CMS)

Bio tool

Greenhouse (ATS)

Composition

Intelligent pre-processing of page data at publish time - processing once, when
content is created and updated, rather than processing on every request

Publish time pre-processing

22

Headless architecture

Let’s compare with a single page application

B
ackend For Frontend A

P
I

Publishing layer Presentation layer

Static
WebsiteSearch indexing

API

Search

Content

Passle (insights)

Umbraco (CMS)
Bio tool

Greenhouse (ATS)

Content is PULLED on request

23

Composable architecture

Composable architecture with static site

B
ackend For Frontend A

P
I

Publishing layer True headless layer Presentation layer

Static
Website

Static site
generation

Publish triggers
content ingestion

Search indexing
API

Search

Publish static pages

Content

Passle (insights)

Umbraco (CMS)

Bio tool

Greenhouse (ATS)

Composition

Content is PUSHED on publish

24

• Intelligent pre-processing of page data at publish time.

• Processing once, when content is created and updated, rather than processing on
every request.

• Triggered by a publish action in Umbraco (or any other system).

• Generating one or more view models for specific use cases.

• Storing the generated view model in fast storage.

• Whenever content changes, a new publishing event triggers updating the
existing model.

• Effectively minimising the workload at request time by displacing the
workload from request time to publish time.

Publish-time pre-processing

25

Page composition by example

Article

Passle

BioBio Tool

Footer

Umbraco Navigation

Header

JobGreenhouse

Article

Article

Published
1 week ago

Published
now

Published
1,5 months ago

Published
2 weeks ago

Published
1 year ago

Published
2 days ago

Header

Footer

Navigation

Article

Article Article Bio Job

Publishing layer True headless layer

Federated content poolSystems Source entities Transformations

26

Key differences in summary

Key differences between headless and true headless

Cost
In the short term, headless is
more cost-effective than true
headless due to the reduced
architectural complexity.

However, with true headless,
the cost of change, e.g.
changing early decisions
later, is significantly less and
will end up with a lower total
cost of ownership.

Flexibility
True headless builds on
composable principles,
greatly increasing flexibility.

Since each microservice has
a single responsibility, it is
easy to unplug and
substitute.

Longevity
True headless builds on
composable principles,
greatly increasing life
expectancy due to the
flexibility and smaller cost of
change.

A monolithic platform on the
other hand is more likely to
become increasingly difficult
to maintain over time and
will require a full rebuild.

Sustainability
True headless utilises re-
processing of content and
data at publish time and
static site generation,
significantly boosting
sustainability over the
traditional headless
approach.

Dedicated microservices for
ingestion of content and
data, minimising reserved
computation.

Role of the CMS
With traditional headless, the
CMS is the key player. All
other data sources need to
be integrated into the CMS,
which will make it monolithic.

With true headless, the CMS
is just another microservice
delivering content to the
federated content layer.

Sustainable content delivery

2. Content delivery

NOT TRUE

Composition = multiple API

NOT TRUE

Composition = caching

30

Does multiple source systems equal the need for API orchestration for content delivery?

Orchestrated

• Federated API management / API Gateway.

• GraphQL queries across multiple source APIs.

• Only as good as the weakest link.

Solo performance

• With a content federation layer, content delivery is reduced to a single content
delivery API.

• Aggregated and cross-pollinated content is inherent.

• Full control over the API output.

• Blazingly fast.

Orchestrate or solo performance?

31

Preparing a page for static site generation requires ALL
content and global elements, contrary to a single-page
application where content can be reused.

With the composable layer, we achieved just that.

Single API request per page

Header

Footer

Navigation

Article

Article Article Bio Job

33

API requirements for efficient SSG

ü Efficient delivery of page data in a
single request.

ü Efficient delivery of all published routes.

ü Efficient API for delivering bulk content
for multiple routes in a single API
request.

Sustainable static site generation

3. Static site generation

First things first

Technology stack

36

Tech stack

Algolia
search as a service.

Enterspeed
Content federation and
composable building system.

Umbraco
We all know and love.

Cloudinary
Digital asset delivery.

Azure
Hosting and infrastructure.

Vue.js
Framework for building user
interfaces.

Astro
Multi-page application
framework for content-
driven websites.

Cloudflare
Web application security and
performance.

Tailwind
Utility-first CSS framework.

Storybook
Playground for UI
component development.

Docker
Containerisation of
microservices.

Azure DevOps
CI/CD and SSG pipeline.

Frontend stack

Platforms

Infrastructure

37

Static Site
Generation
superstars

Tech stack

Algolia
search as a service.

Enterspeed
Content federation and
composable building system.

Umbraco
We all know and love.

Cloudinary
Digital asset delivery.

Azure
Hosting and infrastructure.

Vue.js
Framework for building user
interfaces.

Astro
Multi-page application
framework for content-
driven websites.

Cloudflare
Web application security and
performance.

Tailwind
Utility-first CSS framework.

Storybook
Playground for UI
component development.

Docker
Containerisation of
microservices.

Azure DevOps
CI/CD and SSG pipeline.

38

A story about sustainability and user (editor) experience

• A sustainable sink in the shower room of our office building.

• Fully automatic.

• But hypersensitive.

• It will turn off while in use.

• Built-in timeout to save water consumption.

• Count to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 before it will dispense water again.

• If you are too eager, start from zero again.

• Sustainability is not just about being reusable if it’s not usable in the
first place.

39

• Obviously, we need the ability to generate the full site.
• but, to optimise, we need the ability to only generate a part of site.
• Knowing when to apply which is crucial.

• What is the significance of a content change?
• A single page.
• A regional site.

• Navigation, headers and footers.
• Global elements.

• Related content (hydrated in the browser).

• Search (search as a service).

• The editor knows best – and then the automation won’t fail.

Everything everywhere all at once?

40

Full static site generation from dashboard

Umbraco integration

41

Partial static site generation from the content tree

Umbraco integration

42

Remember the sink! We do NOT want to have to count to 10.

Let’s save the editor from having to
generate pages just for preview.

• The federated content layer contains
and maintains two individual content
pools:

• Published content.

• Preview content.

• Astro supports server-side rendering,
static site generation and dynamic
rendering.

We take advantage of these properties:

• Hosting a separate and restricted
preview application with NGINX and
Node.js in a docker container.

• Dynamically rendered in the browser
using the content delivery API to fetch
page content.

• Links to the preview application can
be distributed and viewed internally,
supporting stakeholder review and
approval flows.

Real-time preview

43

Biographies, insights and vacancies are automatically ingested into the federated content pool

• As we just saw, the editor can trigger static site generation
from Umbraco.

• However, some content is automatically composed in the
content federation layer.

• Enterspeed has webhooks that will send a ping when a page
model has been generated.

Editors control vs. composable automation

Passle (insights)

Umbraco (CMS)

Bio tool

Greenhouse (ATS)

Static site
generation

Webhook

Webhook

Webhook

44

How do we reduce the number of static site generation requests?

The challenge

Static site generation requests can come from many sources:

• Distributed editor.

• Automated webhooks.

• Potentially unnecessary concurrent requests from editors around the world.

• Scheduled publish.

• Potentially thousands of concurrent requests when re-synchronising data.

Reduction strategy

45

Generate

Fulfil the request and
deploy the files.

Reduce

Reduce to a single
request.

Examine

Examine the list of
SSG requests and
Apply a reduction

strategy to the list of
requests.

Time elapsed

Until a set interval
has elapsed (or the
maximum number

of requests is
exceeded).

Reactive queue

Queue all static
site requests

Reduction strategy

How do we reduce the number of static site generation requests?

z

47

All hosting is consolidated in Azure

We reviewed a few different approaches to static site hosting.

• Azure function with blob storage.

• Azure static web app (favourite contender).

• Minimal .NET host with blob storage.

Learnings

• Too little control over the deployment.

• No support for partial deploys.

• Timeout on deployment due to the number of folders and files.

• Got annoyed I took action.

Static site hosting and deployment

48

All hosting is consolidated in Azure

Result

• We ended up selecting an ultra-simple
.NET host in a docker container backed
by blob storage.

• Using Azure DevOps for static site
generation and deployment.

• Managed by a dedicated Platform API
microservice.

Static site hosting and deployment

49

Static site generation flow

50

Blue/green deployments with Azure Container App Service and Blob Storage.

• Blue/green deployment is a deployment strategy with two separate but identical
environments. One environment (blue) runs the production website, and the other
environment (green) is ready and awaiting a new deployment.

• Once the pre-production deployment has been verified, the two environments are
swapped.

Zero downtime deploys

Production site

Pre-production site Production site

Pre-production site

/app/wwwroot/

/app/wwwroot/

/app/wwwroot/

/app/wwwroot/

SWAP

51

Outsourced to Cloudinary

• Digital Asset Management and Delivery.

• Global CDN delivery and intelligent and performant
transformation API.

• Integrated into Umbraco.

• But best of all, image delivery is outsourced
and we do not have to worry about uploading
files when deploying
a static site.

Digital asset delivery

52

Not everything is static.

• 301 and 302 redirects from renames and the old site structures.

• Multilingual 404 pages.

• Generating vCards on the fly.

• Media files from the Umbraco media library.

• Stored and served from Azure Blob Storage.

• It saves us from uploading assets with each deploy.

• Spent a lot of energy on finding the solution. Turns out the best
solution is dead simple.

Dynamic in a static world

53
z

…

Dynamic in a static world

Time for a status – did we make a difference?

Wrapping up

55

56

Thank you.

