
Umbraco on .NET Core Status

BY BJARKE BERG

- Motivation & Project goals
- ASP.NET Core
- What’s Changes So Far
- Coding Challenges
- Breaking Changes
- Community Involvement
- Project Overview

Agenda

Motivation & Project Goals
Why are this project so important

Motivation for moving
to .NET Core

● .NET Framework end-of-life

● Cross platform support

● Performance improvements

● New tech

● Easy transition of customer projects

● Improved code quality

● Community involvement

The Project Goals

The Unicore Team
● Helps other community members to contribute
● Helps HQ identify tasks that can be up-for-grabs
● Pick up coding tasks with tight deadline
● Pick up more advanced tasks

ASP.NET Core
Is not that different after all

- Setup
- Basically a self hosted program.
- Pipeline is very flexible

- HttpContext
- Unified MVC + Web API

- Everything is MVC
- Configuration
- Native Dependency Injection Container

Biggest changes compared to ASP.NET

- Controllers
- Need to inherit from another base controller

- Views
- New options

- @inject dependencies
- Tag Helpers
- View components

What is almost the same

What’s Changed So Far
Evolvement of the architecture

Umbraco.Core
(1462 .cs files)

Umbraco.Examine
(38 .cs files)

Umbraco.Web.UI
(37 .cs files)

Umbraco.Web
(1067 .cs files)

Umbraco.ModelsBuilder.Embedded
(38 .cs files)

Umbraco 8

Other
Third-party

...
Newtonsoft.Json

NPoco
Examine

Lightinject
...

System.Web

Other
Microsoft
Libraries

● Pure Umbraco business logic and abstractions
○ No third-party frameworks
○ Models
○ Services

● Half of the existing Umbraco.Core exists here
● General rule

○ If the there is no third party dependencies - The class belongs
here

Introduced new Core Assembly

● Third-party frameworks used
○ Repositories (NPoco)
○ Container (LightInject)
○ Logging (Serilog)
○ Search (Examine)

● The second half of Umbraco.Core exists here

Introduced Infrastructure Assembly

● Cannot be compatible with .NET Standard
● Implements interfaces that exists in Umbraco.Core

○ Classes needs to be injected

Introduced SqlCe Assembly

● Implements our configuration interfaces that exists in Umbraco.Core
● Uses System.Configuration for now

○ Plan to replace with ConfigurationBuilder pattern fra .NET Core

Introduced Configuration Assembly

● Classes that use System.Web and logically belongs to Web is moved

Moved web dependencies from Core to Web

● Classes that did not logically belongs to Web is moved to
○ Core

■ If no third-party frameworks is used
○ Infrastructure

■ If third-party frameworks is used

Moved non-web classes from Web to
Infrastructure or Core

● IRequestCache
○ Instead of HttpContext.Items

● ICookieManager
○ Instead of HttpContext.{Request/Response}.Cookies

● IUserAgentResolver
○ Instead of HttpContext.Request.UserHostAddress

● ...

Abstracted usage of HttpContext

Umbraco.Core
(1153 .cs files)

Umbraco.Web.UI.NetCore
(2 .cs files)

Umbraco.ModelsBuilder.Embedded
(38 .cs files)

Unicore Current Status

Um
braco.Configuration

(45 .cs files)

Um
braco.Exam

ine.

Lucene

(17 .cs files)

Um
braco.Publishing.

NuCache

(39 .cs files)

Um
braco.

Persistence.SqlCe

(2 .cs files)

Umbraco.Web.BackOffice
(8 .cs files)

Umbraco.Web.Website
(2 .cs files)

Umbraco.Web.UI
(37 .cs files)

Umbraco.Web
(428 .cs files)

Umbraco.Infrastructure
(957 .cs files)

Clean Architecture Layers (Onion View)

Clean Architecture Layers
● Business logic independent of

○ Frameworks
○ Database
○ Externals
○ UI

● Testable business
logic

Umbraco.Core

Umbraco.Web.UI

Umbraco.ModelsBuilder.Embedded

Architecture End Goal

Um
braco.Configuration

Um
braco.Infrastructure.

Persistence.SqlServer

Um
braco.Exam

ine.

Lucene

Um
braco.Publishing

Um
braco.Infrastructure.

Persistence.SqlCe

Um
braco.Infrastructure

Umbraco.Web.BackOfficeUmbraco.Web.Website

Coding Challenges
And how we solve them

Circular Dependencies

● ModelsBuilder bundled as package
○ Runtime crash, on breaking changes
○ ModelsBuilder is now embedded correct into the

codebase
● Between classes

○ Break vs inject lazy

Static classes with third-party dependencies

● HostingEnvironment ⇒ IHostingEnvironment
● IOHelper ⇒ IIOHelper
● UmbracoVersion ⇒ IUmbracoVersion
● TypeFinder ⇒ ITypeFinder
● ...

● CallContext was used to keep state in nested scopes as fallback to
HttpContext

● Replaced using
ConcurrentDictionary<string, AsyncLocal>

Logical CallContext not available in .NET
Standard

- The ASP.NET part of System.Web is completely rewritten in ASP.NET
Core

- Static HttpContext should be accessed using IHttpContextAccessor
- Static HostingEnvironment not available
- HttpModule

- Need to be rewritten as Middleware in ASP.NET Core

System.Web known everywhere

● Do not exist in .NET Standard
● For now we have our own interface and and implementation for

Framework
● In .NET Core IHostApplicationLifetime exists that can be used for the

same, but does not require an interface.

IRegisteredObject

● Used to provide extra exception information to some of the logged errors
● Do not exist in .NET Standard

○ Exists in .NET Core 3.1 and .NET Framework 4.8
● Implement specific Framework implementation for now

Marshal

● We have introduced an interface to generate Urls
○ Multiple implementations

■ ImageProcessor - .NET Framework
■ ImageSharp - .NET Standard
■ Others?

Imaging

● BPlusTree
○ Replaced with fork of the project, that is updated

NuCache dependency not .NET Standard

● Often in if-else or switch-case statements
○ BulkInsertRecords now use a IBulkSqlInsertProvider

Tightly coupled to dependencies

● We still had some dependencies on WebForms
○ NoNodes.aspx

■ Rewritten to MVC
○ Macros

■ Need to clean up and abstract

WebForms

● Known everyware
○ Has dependency on HttpContext
○ Abstracted into IUmbracoContext and

IPublishedUrlProvider

UmbracoContext + UrlProvider

● Solved in different ways
○ Refactored to not use the service
○ Introduced factory
○ Deserialisation handled by custom JsonConverters
○ Moved properties to extension methods

■ Inject dependencies

Models / DTOs using services or type
collections

Breaking Changes
And what we do not change

● Constructors are updated to inject their dependencies
○ If you use the DI container you shouldn’t care

Constructors

New Abstractions and factories

● new MenuItemCollection() ⇒ IMenuItemCollectionFactory.Create()
● UmbracoContext ⇒ IUmbracoContext
● IOHelper ⇒ IIOHelper
● HostingEnvironment ⇒ IHostingEnvironment
● …
● Get these using the DI Container

● Don’t use ConfigurationManager directly
● Inject the config interface
● Change to ConfigurationBuilder leads to transformation changes.
● JSON as default

Configuration

● The database schema
○ The Umbraco 8 database can be used

● The AngularJS code
○ Users/Members will have small changes

● The backoffice API
● Views

○ The old structure of views can be reused.
○ You will most likely need to inject dependencies

What do we not expect to break

Community Involvement

Outcome of team visit in January
● Imaging

○ 4 up-for-grabs tasks
● Install process / NuGet

○ RFC
● Publishing / NuCache

○ PR solving most of issue
● Members & Users

○ Rock Solid Knowledge take charge of this sub-project

● Currently
○ Code: Look for label project/net-core on GitHub
○ Look for RFCs - you comments are valuable

● Future
○ Look for documentation that is changed, and send PR with

updates
○ Try out the alphas/betas/rcs

How to contribute

● Inject tasks
○ A lot of different tasks that replaced usages of Current.* with

injection
● Configuration

○ New configurations types
● Imaging

○ Abstracting url generation

Tasks already closed by community

Project Overview

Parallelization

Infrastructure

Core

Configuration

Persistence.SqlCE

Examine

Imaging

Publishing

Trim Web

Extract BackOffice

Extract Website

Update Executables

Install Process / NuGet

HQ Packages

Documentation

Fix after internal tests

Fix after Beta Test

Done In progress Not started

Users / Members

Burndown - Start Estimate 2354

Velocity

● All estimates are made using Triangular Estimation
○ B - Best case
○ M - Most likely
○ W - Worst case
○ Estimate = (B+4M+W) / 6

● By the end of the day, all estimates are just guesses

Triangular Estimation

Largest estimates

● Documentation
○ 240

● Users / Members
○ 220

● Executable - Website
○ 220

● Buffer for fix of issues found in Beta and RC
○ 220

● HQ Packages
○ 216

● Buffer merge/reimplement v8 features
○ 160

● NuGet / Install process
○ 120

● Publishing
○ 120

● Executable - BackOffice
○ 100

Current activities

● Macros cleaned up and abstracted

● Starting the Backoffice executable

● NoNodes.aspx reimplemented in MVC

● Executable Backoffice in .NET Core

● Imaging handled by ImageSharp

● Abstracting runtime minification and bundling

Next activities

Definitions
● Milestone 1

○ We have something running on .NET Core (3.1 LTS)
○ Not feature complete
○ Missing either website or backoffice functionality
○ Expect lots of undocumented breaking changes
○ Missing members
○ Missing NuGet/dotnet new template

● Milestone 2
○ We expect the CMS to be complete
○ Expect few documented breaking changes
○ Package development is expected to begin

● Milestone 3
○ HQ packages available

■ Starter kits
■ Forms
■ Deploy

(T-1300)

(T-550)

(T-250)

Availability - Best Guess (Disclaimer)

● Milestone 1
○ H2 2020

● Milestone 2
○ H2 2020

● Milestone 3
○ H1 2021

Thank YouThank You

