
Not your grandmother’s
headless

BY MIKKEL KELLER STUBKJÆR



$ whoami

Mikkel Keller Stubkjær
Head of Development

Novicell UK

mks@novicell.co.uk
+44 (0) 7756 634 808

https://www.linkedin.com/
in/mikkelkeller/

Long-time passionate Umbraco developer 
and seasoned software architect.

• Head of Development at Novicell UK

• 10+ years of experience with Umbraco 

(2007)

http://novicell.dk
https://www.linkedin.com/in/mikkelkeller/


About 3 years ago 
we embarked on an exciting adventure



Decomposing
the monolith 

of large scale e-commerce 



Approach
using microservice architecture, headless api’s 

and assembling best of breed platforms and services 



We wanted freedom
of choice

CMS system, PIM system, commerce platform, 
recommendation engine, personalisation engine etc.



Choosing
best of breed
for our client 

Contextual to the marked, the costumers, the competitors as 
well as the internal capabilities of their organisation 



We are
CMS Platform Agnostic



Best of breed 
CMS



Part of that journey
To apply headless at scale



Strategic requirements

• Performance and scalability as a first principle
• Minimising request-time workload

• Caching as a last resort

• Freedom to choose different .NET versions

• Freedom to choose the frontend tech stack 

• Reusability, flexibility and extendability

• Headless APIs



Unfortunately
No mature headless offering was available at the time



Without headless

• No ability to isolate the workload of the website from the 
workload of the CMS
• No control of ressource consumption within the website runtime (eg. 

database requests from within Umbraco etc.)

• The performance and scalability of the website is affected by Umbraco

• Dependencies on the .NET version of Umbraco

• Dependencies on the frontend framework of Umbraco 
(ASP.NET mvc)



Luckily
We are builders



Actually
Even with a headless api, there will still be a direct 

performance dependency on the CMS



Why #1
Direct performance dependency on the workload



Request-time 
transformations

When a controller generates a view model by transforming 
node data. Traversing the content tree, aggregating data from 

multiple nodes, doing dictionary look-ups etc.



What if 
we could prepare data in the desired form

and update it whenever changes occur



Publish-time
transformations

When a publish action generates a view model by transforming 
node data. Traversing the content tree, aggregating data from 

multiple nodes, doing dictionary look-ups etc.



Publish-time transformations

• Triggered on publish action in the Umbraco backoffice
• Listening to Umbraco events

• Generating view models
• Tailored for a specific page or purpose

• Storing the generated view model in fast cache-level storage
• Without the need for TTLs and cache invalidation (hardest thing ever)

• Whenever content changes, a new publish event triggers the existing 
model to be overridden



Why #2
Direct performance dependency on the CMS



Direct Headless

Website Umbraco CMS
REST api

SQL
Database

Separation of website and CMS
But direct dependency on the CMS



Indirect Headless
Serving up the view models directly from intermediary storage



Indirect Headless

Website Umbraco CMS

REST api

Content API

Publish events triggers
transformations
and stores
view models

SQL
Database

Intermidiary cache-
level storage

Complete separation of website and CMS
No direct performance dependency on the CMS



Effectively
Minimising workload at request-time by displaces the workload 

from request-time to publish-time



Effectively
Moving the workload from our website visitor to the editor



Effectively
Removing the direct performance dependency on the CMS



Remember
We wanted freedom of choice



Building
A CMS agnostic

headless transformation engine



Website CMS

REST api

Content API

Publish events triggers
transformations
and stores
view models

SQL
Database

Intermidiary cache-
level storage

CMS runtimeAPI & Website runtime



Website

Content API

CMS

Intermidiary cache-level storage

CMS runtimeAPI & Website runtime



Headless Transformation engine
(Novicell.App.Headless.Server)

Headless Storage
(Novicell.App.Headless.Storage.Redis)

Headless Core
(Novicell.App.Headless.Core)

Website

CMS

Content API

CMS runtimeAPI & Website runtime



Website

Content API

Headless Transformation engine
(Novicell.App.Headless.Server)

Headless Storage
(Novicell.App.Headless.Storage.Redis)

Headless Core
(Novicell.App.Headless.Core)

CMS

Headless API
(Novicell.App.Web.Headless.Client.Rest)

Headless Delivery Services
(Novicell.App.Headless.Client)

SPA website

CMS runtimeAPI & Website runtime



Website

Headless Transformation engine
(Novicell.App.Headless.Server)

Headless Storage
(Novicell.App.Headless.Storage.Redis)

Headless Core
(Novicell.App.Headless.Core)

CMS runtime

Headless API
(Novicell.App.Web.Headless.Client.Rest)

Headless Delivery Services
(Novicell.App.Headless.Client)

SPA website Umbraco CMS

Headless binding to Umbraco
(Novicell.App.Umbraco.v8.Headless.Server)

API & Website runtime



Time for some code



Runtime configuration

API runtime CMS runtime

Common headless configuration



Common headless configuration



Configuring a transformation 

Doctype alias

Type of view model

Key for storing the view model



The view model 



The transformation 
View model type

Transfer values to view model



Re-visiting
transformations



Anatomy of a webpage

• Global elements
• Header, Menu, Footer etc.

• Routable content
• Articles, Pages etc.

• Linked Content (aggregated)
• News, Faqs, emplyees etc.

• External Data
• Product information, prices, stock 

count etc.

Page 
Content

Header / Menu

Footer

Linked
Content

External
Data



Anatomy of a webpage

View Models
Translates to

• Global elements
• Header, Menu, Footer etc.

• Routable content
• Articles, Pages etc.

• Linked Content (aggregated)
• News, Faqs, employees etc.

• External Data
• Product information, prices, stock 

count etc.



Multiple transformations

2 transformations are triggered when 
a FrontPage node is published:

• Menu view model

• FrontPage view model

Page 
Content

Header / Menu

Footer

Linked
Content

External
Data



Configuring global transformation 
Register transformation on multiple doctypes

Navigation model key



A single request
for aggregated content

Linking global elements to routable elements



Linking global view models 

Going back to the FrontPage doctype

Linking a global element key to the FrontPage view Model 



Intermediary storage
And internal data structures



Underlaying storage

• Key / value storage 
• Efficient for retrieval

• Json in NoSQL storage
• Efficient for serialization and deserialization

• Utilising fast cache-level storage
• Originally build using Redis for performance
• Now also supporting CosmosDB for replicated datasets
• And Examine, Lucene, SQL server for scaled down instances



Routing and content keys

Routing and Content is divided into two distinct key/value storages

• Routing storage: 
• keys are urls (or paths) eg. ”domain.co.uk/”, ”/” or ”/en/”
• Only routable content has a key/value pair in the routing storage

• Content storage: 
• keys are static eg. ”menu” or dynamic eg: $”navigation:{x.SiteId()}”
• All view models have a key/value pair in the content storage



Routing and content keys

Page 
Content

Header / Menu

Footer

Linked
Content

External
Data

Content storage
• Key: ”1145” 

• Key: ”menu”

• Key: ”footer”

Routing storage
• Key: ”/” 



Routing

• Primary key
• Key: ”/”

• Routable content key
• ContentKey: ”1143” (eg. Frontpage)

• All content keys (including globals)
• ContentKeys: [”1142”, ”menu”, ”footer”]

Meta model



Content

• Primary key
• Key: ”1143”

• Meta information
• Culture,

• Scheduled publishing

• Etc.

• View Model

Meta model



Headless backoffice
extensions



Headless Dashboard



Headless Content App



Headless Preview



Headless Preview and storage

• Extra set of storages
• Published storage

• Route storage
• Content storage

• Preview storage
• Route storage
• Content storage

• Preview storage is routed by id (like native preview in Umbraco) and 
rewritten in IIS
• Transformations are triggered on save event



Other supported features

• Dictionary service
• Routing service
• Strong typed grid transformations
• Search based on search models and view model annotations
• Taxonomy filtering, also based on view model annotations
• Linked Content
• External Linked Data
• Content listeners and View Model listeners



But what about 
Umbraco Heartcore?

Fantastic, use it, we didn’t have the luxury



However, we still need

• Full control of the Umbraco setup

• The ability to ship custom code with Umbraco

• Performance without the need for caching with publish-time 
transformations and fast cache-level intermediary storage

• Aggregating Umbraco content with external data

• Since we focus on websites and not Apps, IoT or chatbots, 
we can actually still allow the editor to preview the website



THANK YOU!
Mikkel Keller Stubkjær

Head of Development
Novicell UK
mks@novicell.co.uk
+44 (0) 7756 634 808

+44 (0)20 8144 8142 ______   hello@novicell.co.uk

http://novicell.dk
http://tel:442081448142

