
Phil Whittaker - HiFi

Deep dive into the
Umbraco Headless Demo

Umbraco
Leeds

Umbraco
Manchester

Why have this talk…
youtube.com/watch?v=6BYG2oOZR2I

https://www.youtube.com/watch?v=6BYG2oOZR2I

Who is this talk for

• Umbraco developers (experience of .Net)

• With little or no understanding of NextJs

• Who are interesting in learning more

• And may have found the demo hard to understand

The aim of this talk
 Through the lens of the Umbraco.Headless.Demo

• A helping hand to getting started

• Understanding the basics of NextJs

• Be aware of the common pitfalls of NextJs

• Understand the patterns
and structures used in the demo

• Dispel the myth that NextJs is hard or
just for frontend developers

Getting Started

Typescript is
your friend

It’s makes javascript usable
(and a bit more like c#)

The GitHub repo

• Clone repo from
github.com/umbraco/Umbraco.Headless.Demo

• Two branches
- frontend/main
- backend/main

Getting started - frontend
(like appSettings)

• Add an env.local file to the root

Getting started - running locally

• On the backend (http://localhost:38817/umbraco)

cd src/Umbraco.Headless.Demo.Web
dotnet run

• On the frontend (https://localhost:3000)

npm install (first time only)
npm run dev

• Disconnected solution

• Easier Umbraco upgrades

• Take advantage of SSG / ISR
state site generation
incremental static regeneration

• Can take advantage of a
mature frontend eco-system
(Storybook, Typescript, React, Tailwind)

Why headless

Some NextJs Basics
It helps to understand a few concepts

What is NextJs
And how does it work

• A NodeJs application, built using React

• Client Side / Server Side rendering

• Unique routing solution

• Extensive caching options (dangerous?)

• Can be deployed to Vercel hosted network

• Distributed computing by default

Umbraco + NextJs

The App Router

• Routes as separate folder

• Reserved file names for specific functions
Page, layout (template, error, loading)

layouts are like master layouts in MVC

• Other supporting files are allowed
(feature slicing)

• Dynamic routes, wildcards etc
Retrieve dynamic pages from Umbraco

Server / Client rendering

• Defaults to server side

• Can use async functions

• No client-side hooks
(useState, useEffect, context providers)

• Optional client-side ‘use client’;

• No async functions

• Child components always client-side

Server Actions
• Similar to surface controllers

• ‘use server’;

• Server side
automatically
deployed to the edge

Server Actions

Client Side

Server Side

Route Handlers

• Similar to Api controllers

• Locked down by default (CORS)

• React to HTTP request (GET, POST etc)

• Automatically deployed to the edge

Useful Misc Helpers and Automation
• Meta data, open graph

• Robots txt
(robots.tsx)

• XML Sitemaps
(sitemaps.tsx)

• Fonts

NextJs : common pitfalls
Where everyone goes wrong

Caching
Dev mode behaves very

differently to published mode

Caching mechanisms in NextJs

Taken from NextJs docs

Build and start

• Npm run build

Build and start

• Npm run build

Causes of forced SSR

• Calling dynamic functions or
variables on a route
(cookies or query strings)

• Explicitly setting caching off
in a page

• Calling fetch in a page (or it’s
child components) with caching
turned off

• Using dynamic routes
(‘some/[pages]’)

/app/products/[handle]/page.tsx

Revalidation of SSG
• Time based

• On Demand

• By Tag

• By Path

• Marking for revalidation
can be called anywhere; server action or api call

• Common mistake
(full page caching - navigation

More info on revalidation planning

https://www.udemy.com/course/next-js-the-complete-developers-guide/

Umbraco API’s

Swagger Docs
All the details are here

https://localhost:44381/umbraco/swagger/index.html

https://localhost:44381/umbraco/swagger/index.html

Structures and examples

App directory
(views)

Components
(partials / viewcomponents)

Defining Structure (lib/umbraco/types.ts)

• Umbraco api model structure
content delivery

commerce

forms

used by mapping functions to create vm’s

Could now use Delivery Api Extensions to generate model builder like swagger

Then user open api codgen to generate structures in typescript
https://marketplace.umbraco.com/package/umbraco.community.deliveryapiextensions

• Some internal Models

Cart, CartItem

Image, Manu

etc…

Calling Umbraco (lib/umbraco/index.ts)

• Base umbracoFetch
umbracoContentFetch

umbracoCommerceFetch

umbracoFormsFetch

• Model to Vm mapping
(reshaping)

• Specific API calls
removeFromCart, updateCartItems, updateCart, getCart

getMenu

getProduct(s), getPageRecommendations, getProductTags

getPage(s)

etc… including checkout functions & form functions

Products

Product Content

Product Content

• Retrieve product handle
from segment in url
(app/products/handle/page.tsx)

Server Side

• Getting a product
content from Umbraco

Product Content Revalidation

Product Content Revalidation (Umbraco)

Product Content Revalidation (NextJs)

Navigation

Navigation

Navigation

• Page layout (server-side)
(components/layout/page-layout.tsx)

Navigation

• Get menu
(lib/umbraco/index.tsx)

Navigation

• Render menu
(components/layout/main-nav.tsx)

Cart

Adding to cart

• Button handler (client-side)
(components/cart/add-to-cart-button.tsx)

• Server-side handler
(components/cart-actions.tsx)

• Service call
(lib/umbraco/index.ts)

Loading Current Cart

• Layout context providers

• Cart Context Provider
client-side (components/cart-context.tsx)

• Server-side handler
(components/cart-actions.tsx)

In Summary

• Some parts of NextJs feel very familiar

• Be careful and build with caching in mind

• NextJs + Umbraco can be used to create
rock solid and efficient sites

• NextJs is not that scary, give it a try

• Umbraco upgrades just got so much easier

Thanks for listening

